高格机械网 >> 牛头刨床

铝合金加工硬质合金高速立铣刀的分析与设计风铃

2022-07-14

铝合金加工硬质合金高速立铣刀的分析与设计

1 前言

随着加工机床和刀具材料的技术进步,高速切削技术得到了长足的发展。

目前,国际知名工具公司都拥有了铝合金加工硬质合金高速立铣刀刀具产品。其中:Jabro Tools 公司、Fraisa公司产品较为成熟,系列全,品种多;另外Sandvik公司、OSG公司、三菱公司、Titex Plus公司、Guehing公司也都推出了铝合金高速切削刀具。

我国的高速切削技术起步较晚,直到上个世纪八十年代末,国外高速加工技术大规模应用之时,我国才开始认识高速加工技术的巨大发展前景和应用潜力。1987年北京理工大学、同济大学收集和整理了大量关于高速切削的技术资料并从事高速切削技术的研究,并陆续发表了一些研究文章,90年代以后,国家自然基金资助了一系列高速切削相关技术的研究工作,其中山东大学和北京理工大学在高速切削机理研究与刀具研制方面作了大量工作。但是目前国内还没有成熟的产品系列,高速加工刀具大量依靠进口,研究高速加工设计机理,发展硬质合金高速刀具系列十分必要。

2 高速立铣刀的设计原则关系式

刀具失效有以下几种形式,第一,在切削过程中,刀具在初始状态就因为强度原因产生断裂,刀具立即失效,这种刀具肯定是失败的,这完全可用静力分析来计算,这种分析可称之为FA;第二,刀具在切削过程中由于刀具振动,使刀具寿命以及被加工件不能满足实际要求,对刀具切削过程的振动分析称之为FS;第三,刀具在切削过程中由于刀具前角和后刀面磨损太大或者由于刀具的微崩刃,使刀具不能满足要求,这是由于刀具前刀面和后刀面承受切屑和已加工面压力,产生摩擦,特别在高温状态下,刀具硬度降低,更容易磨损,这种分析称之为FM。

一般的,在刀具设计中,刀具强度必须首先保证,其次为振3、根据电子万能实验机的使用情况及油的使用期限动,最后才是FM。也就是说刀具设计存在以下关系式:

D={FA→FS→FM}

同时FA、FS、FM也不是孤立的,它们之间也相互联系,随着刀具的磨损,刀具角度发生变化,切削力也随着提高,刀具发生振动和折断的可能性增大,刀具振动增大,同时也在加速刀具的破损和折断。

作为刀具的一个组成部分,高速立铣刀的设计原则同样建立在此关系式的基础上,按FA→FS→FM对刀具进行分析,获得刀具参数,并进行论证。

3 有限元分析在高速立铣刀设计中的应用

从二十世纪七十年代开始,有限元法即被应用于切削加工的模拟,并取得了一些成绩,经过几十年的发展,无论是国外还是国内,都有相当的研究成果,有限元法逐渐应用于分析切削工艺,预测工件、刀具以及切屑中的温度分布,分析整体立铣刀的弯曲变形,研究整体硬质合金立铣刀的应力分布及破坏形式等。

从这些研究成果来看,有限元分析开始用于切削的力学判定,包括切屑的形成以及内部应力应变情况,主要研究切削温度场分布和系统的研究刀具振动和失效,总的趋势是从机理研究过渡到应用技术。然而,怎样研究高速加工立铣刀的设计以及制造工艺,怎样判定设计的合理性,以及怎样指导具体的设计和工艺要求,在这个方面的研究,国外和国内大学的资料基本上还是空白。本文针对以上空白进行研究,在确立了高速立铣刀的切削力模型和设计原则之后,运用有限元分析法对设计关系式的三个重要因素一一进行分析。

1) 静力分析FA

刀具折断应力分析

刀具折断主要有以下几种形式:第一,高速铣刀在使用过程中刀具刃口逐渐磨损,切削力逐渐增大,最后导致刀具失效,此时若不及时换刀,将导致刀具折断;第二,由于刀具过于薄弱或相对切削用量太大,刀具承受切削力过大,导致刀具折断。应用有限元分析,可以得到刀具受力薄弱环节,在设计中重点考虑和设计:

图1 静态应力分布图

从图1可以看出,刀具折断点在两个应力集中点,一为靠近夹头处,一为刀具缩径处,其中缩径的应力集中更为明显,此处极易断裂。对于刀具缩颈处,由于应力集中的影响,设计时则格外注意,应如图2圆滑过渡。

图2 缩颈处放大图

高速铣刀切削刃处应力分析

a. 切削刃结构分析

在高速切削过程中,刀尖承受来自工件和切屑的压应力,承受压应力区域在分析过程中按图3阴影部分计算,通过有限元分析,如图4所示。

图3 刃口静态应力分布

图4 刀具参数图

表1 高速铣刀和普通铣刀角度差异

切削

材料 高速切削 普通切削 前角 后角 前角 后角 铝合金 13 普通钢 0 16 铸铁 0 12 钛合金 15

b. 刃口分析

加工高速铣刀所用硬质合金材料的屈服强度等力学性能好,但脆性大,主要破损形式为脆性崩裂,即我们常说的“崩刃”。高速铣刀一旦崩刃后,切削刃与工件接触面的摩擦力急剧上升,刀具磨损加快,导致刀具的早期失效。

图5 切削刃带缺口铣刀的应力分析图

结果分析:

在相同的切削参数下,完整切削刃口的铣刀,刃口处应力值最大,而切削刃带缺口铣刀,应力最大值出现在缺口附近。显然,刀刃的缺口使缺口附近区域的产生应力集中,导致刀具的早期失效。设计过程必须要考虑加工工艺,以保证良好的刃口。

2) 振动分析

在高速切削加工过程中,振动(包括机床的振动,刀具的振动)对工件的加工质量影响很大,同时刀具周期性的振动使刀刃产生微裂纹,微裂纹的产生与扩展,导致刀具的早期失效,所以研究振动规律很有必要。

a. 切削振动公式:

图6 切削振动公式

从上述公式中可以看出,影响切削振动的因素主要为:悬臂长度L,截面刚度I,刀杆直径D,切削深度d,走刀量f,杨氏模量E等。下面针对各个因素进行分析:

i) 刀具悬伸长度变化对刀具应力分布的影响的有限元分析

实际分析的数据是:刀具悬伸长度为85mm时,刀具夹持部分附近区域应力最大值是438.5Mpa;刀具悬伸长度为75mm时,刀具夹持部分附近区域的应力值最大值为324.15Mpa;刀具悬伸长度为65mm时,刀具夹持部分附近区域应力为279.28Mpa。

图7 刀具悬伸长度为85mm时的等效应力图

显然刀具悬伸越大,刀具夹持部分附近区域应力值越大,在高速加工过程中越容易在此区域发生刀具折断现象,所以,在满足加工要求的前提下,尽可能地减少刀具的悬伸长度,避免刀具的突然折断。

ii) 杨氏模量E

当刀杆材料确定后,杨氏模量为一定量,数据如下:

刀杆材料 杨氏模量(E)

(Kg/mm2) 硬质合金 5.3×104 重金属 2.9×104 钢 2.1×104

iii) 截面刚度I

截面刚度主要与刀具的直径有关,但是对于高速立铣刀来说,必须考虑其切削部分结构的特殊性,螺旋槽、后角、前角等对刚性有较大的影响,从而影响刀具的振动。在实验过程中也得到证实,前角和后角以及螺旋角等的变化对各向切削力有相应的影响,同时与振动频率和幅度有一定的关系。在其它条件确定的情况下,通过建立刀具参数与振动的数学关系模型,设定优化的刀具参数值,就可以把刀具受力振动控制在理想的范围内。

iv) 切削深度d,走刀量f等

在用有限元分析及设计模型建立的过程中,切削深度d,走刀量f等这些切削参数对振动的影响就不在这里讨论了。

* 动平衡分析

立铣刀高速切削时,不仅仅受到切削力的作用,而且还受到离心力的影响。如图8、9所示,切削分力Fc(x向造成立铣刀扭转变形),径向分力Fcn(y向造成立铣刀弯曲变形)和轴向分力Fa(z向造成立铣刀沿轴线方向的压缩变形),上述变形引起刀尖在x、y、z三个方向的变化。

(b) 切削力因素(Model1)

(n=10,000r/min,dc=10mm,变形单位:m)

图8 离心力和切削力对刀具的xy向变形(刀尖A点处)的影响

(a) 离心力因素

(b) 切削力因素(Model1)

(n=10,000r/min,dc=10mm,等效应力单位:Pa)

图9 离心力和切削力对刀具最大等效应力的影响

在设计过程中必须考虑动平衡问题,G为平衡品质(mm/s),即反映刀具平衡量与转速关系的参数:

式中:

e——偏心(g×mm/Kg)

M——刀体质量(Kg)

w——角速度(r/s)

m——不平衡量(g)

N——转速(rpm)

r——不平衡半径(mm)

U——残余不平衡量(g×mm)

残余不平衡量U=m×r

* 减振棱

别的,在高速力铣刀的后刀面上与切削刃相交的区域低气味汽车内饰材料的开发和利用已成为汽车材料的利用趋势增加了一条细小的棱带,目的是降低切削力,更好的减少振动。

3) 疲劳分析

a. 高速加工中应力分布

在高速切削过程中,刀刃频繁的切入,切出,使刀具刃口每秒几百次经受工件的锤击。如图10所示:

图10 应力分布分析

在工作行程中总是受压

刀具的设计需要充分注意优化刀具的几何参数,适应如此高频率的应力变化。

高速铣削对刀具提出了更高的要求,高速力铣刀不仅要有很强的抗冲击性更重要的还要有很好的耐高温性。

b. 高速加工中温度分布

高速切削与普通切削不同,普通切削抗冲击性是机械疲劳破损,高速切削在加工过程中,在切削刃周围产生高温,使刀具切削刃局部变软,强度硬度等力学性能下降,这对刀具的磨损以及切屑—刀具之间的摩擦都很大的影响,而且热量较普通切削更集中于刃口,造成刃口处很高的应力和温度梯度,使高速铣削时刀具易产生崩刃等脆性破损。

通过对高速加工切削过程的有限元分析,可以模拟出整个切屑的形成的过程,从而分析出在切削加工过程中温度场的动态分布。作为刀具的疲劳磨损是热疲劳磨损和机械应力磨损的综合,通过刀具参数与两种磨损的关系将有效优化设计。

图11 切削温度分布图

4) 铝合金高速切削的特点及对刀具的要求

在铝加工过程中,由于铝合金塑性变形大,切削速度越高,切屑流动速度大于切削变形速度,即切屑来不及变形就从后刀面流出,如图12所示:

F→刀具

OA为低速时切屑剪切面,OB为高速切削时切屑剪切面,在高速加工时,剪切角将变大,环刚度实验机广泛利用于具有环形横截面的热塑性塑料管材和玻璃钢管环刚度的测定变形系数变小,变形系数接近于1,所以切削变形产生的热量很少,但对前刀面的压力增大,大部分热量来自切屑与刀刃的摩擦,有效降低摩擦热的生成是高速铣刀设计的特点之一。

图12 低速加工和高速加工的切屑变形

5) 对刀具设计的要求

对刀具设计的要求主要是寻求降低摩擦热的方法:

a. 采用涂层介质或前刀面抛光工艺

提高表面光洁度,减少加工时的摩擦阻力

b. 增大前角

切削轻快,降低加工时的切削力

c. GASH角和小槽的设计

Gash 角和小槽主要是容屑和排屑的作用。在高速加工过程中,切屑顺利排除对刀具非常重要,但小槽和GASH角过大,将降低刀具刃部强度,通过对刀具有限元分析,设定安全值,可以有效设计。

4 总结

1) 本文在对刀具失效形式分析的基础上提出高速立铣刀的设计关系式:

D={FA→FS→FM}

2) 本文运用有限元分析法对设计关系式的三个重要因素FA、FS、FM一一进行了细致的分析,确定了高速立铣刀良好结构特点的标准。

3) 本文在分析的基础上对高速铣刀的结构进行优化设计,并运用获得的理论来指导加工工艺的制定。(end)

php面试技巧
RESTful API
编程基础
友情链接